login contact us
RosConcert.com HomePage
    NEWS CENTRAL >> Hi-Tech

News Central


Hi-Tech

"Победитель" проблемы Гильберта заинтересовался задачей тысячелетия
6:07PM Wednesday, Nov 7, 2012
Юрий Матиясевич. Фото Кирилла Шмакова
Математик Юрий Матиясевич, в 1970 году решивший 10-ю проблему Гильберта, заинтересовался другой известной и пока не решенной задачей - гипотезой Римана. Он опубликовал работу (pdf), в которой описал результаты численного эксперимента, который, возможно, будет полезен при изучении этой задачи.

Гипотеза Римана состоит в том, что в комплексной плоскости все нули некоторой функции, известной как дзета-функция Римана и задаваемой сходящимся рядом специального вида, лежат на прямой Re z = 0,5. Эта гипотеза играет важную роль в теории чисел и, как следствие, криптографии (например, в теории сложности алгоритмов).

Несмотря на то, что она была сформулирована в 1859 году, до сих пор не доказана. При этом задача входит в разного рода списки важных проблем. Так, например, она является одновременно частью 5-й проблемы Гильберта и входит в список из семи задач Тысячелетия, за решения каждой из которых Математический институт Клэя обещает награду в миллион долларов.

В своей работе Матиясевич задался вопросом: можно ли построить рекуррентную формулу, позволяющую, (хотя бы приблизительно) по известным N нулям, то есть точкам, где значение дзета-функции равно нулю, построить N+1-ый ноль? Оказалось, что подходящий алгоритм существует. Более того, по утверждению Матиясевича, он дает необычайно хорошие приближения, по крайней мере для вычисленных нулей, при полном отсутствии математического обоснования такой точности.

В завершении статьи Матиясевич делает несколько предположений, касающихся построенных им приближений. Выступая в Университете Лечестера, математик выразил надежду, что сделанные им наблюдения окажутся полезны при изучении гипотезы Римана.

В 1900 году математик Давид Гильберт на II конгрессе математиков в Париже представил список из более чем двух десятков ключевых (по его мнению) задач математики на тот момент. Юрий Матиясевич решил 10-ю проблему Гильберта, которая звучала следующим образом: предъявить алгоритм решения алгебраических диафантовых уравнений, то есть уравнений вида P = 0 в целых числах, где P - многочлен с рациональными коэффициентами. В 1970 году Юрий Матиясевич доказал, что эта задача неразрешима с алгоритмической точки зрения.

По материалам lenta.ru
« « Вернуться       Далее » »
Другие новости по теме
  • В Индии выпустили планшет за 20 долларов
  • У Apple отсудили 368 миллионов долларов за нарушение патента
  • На разработчика процессоров MIPS нашелся покупатель
  • Microsoft выпустит игровой планшет
  • Новые смартфоны Nokia подключили к российскому LTE
  • Windows Live Messenger заменят скайпом
  • У Instagram появится веб-версия
  • Samsung продала 30 миллионов смартфонов Galaxy S3
  • Шифровальную машину времен Второй мировой продадут на аукционе

    Далее » »   Digest | Архив »    
Смотрите также: Hi-Tech, Интернет, Hardware, SoftNews
News Central Home | News Central Resources | Portal News Resources | Help | Login
     
Phone Cards at ComFi Russian America Top. Рейтнг ресурсов Русской Америки. © 2025 RussianAMERICA Holding
All Rights Reserved • Contact